Сравнение чисел по их записи. Сравнение целых чисел: правила, примеры. Сравнение натуральных чисел

Сравнение чисел - одна из самых легких и приятных тем из курса математики. Впрочем, нужно сказать, что она не так уж и проста. Например, мало кто испытывает трудности со сравнением однозначных или двузначных положительных чисел.

Но числа с большим количеством знаков уже вызывают проблемы, часто люди теряются при сравнении отрицательных чисел и не помнят, как сравнить два числа с разными знаками. На все эти вопросы мы и постараемся ответить.

Правила относительно сравнения положительных чисел

Начнем с самого простого - с чисел, перед которыми не стоит никакого знака, то есть с положительных.

  • Прежде всего, стоит запомнить, что все положительные числа по определению больше нуля, даже если речь идет о дробном числе без целого. Например, десятичная дробь 0,2 будет больше, чем нуль, поскольку на координатной прямой соответствующая ей точка все-таки отстоит от нуля на два небольших деления.
  • Если речь идет о сравнении двух положительных чисел с большим количеством знаков, то нужно сравнивать каждый из разрядов. Например - 32 и 33. Разряд десятков у этих чисел одинаков, но число 33 больше, поскольку в разряде единиц «3» больше, чем «2».
  • Как сравнить между собой две десятичные дроби? Здесь нужно смотреть прежде всего на целую часть - например, дробь 3,5 будет меньше, чем 4,6. А если целая часть одинакова, но различаются знаки после запятой? В этом случае действует правило для целых чисел - нужно сравнивать знаки по разрядам до тех пор, пока не обнаружатся большие и меньшие десятые, сотые, тысячные доли. Например - 4,86 больше 4,75, поскольку восемь десятых больше, чем семь.

Сравнение отрицательных чисел

Если у нас в задаче есть некие числа –а и –с, и нам нужно определить, какое из них больше, то применяется универсальное правило. Сначала выписываются модули этих чисел - |a| и |с| - и сравниваются между собой. То число, модуль которого больше, окажется меньшим в сравнении отрицательных чисел, и наоборот - большим числом будет то, модуль которого меньше.

Что делать, если сравнить нужно отрицательное и положительное число?

Здесь работает всего одно правило, и оно элементарно. Положительные числа всегда больше чисел со знаком «минус» - какими бы они ни были. Например, число «1» всегда будет больше числа «-1458» просто потому, что единица стоит справа от нуля на координатной прямой.

Также нужно помнить, что любое отрицательное число всегда меньше нуля.

Сравнение чисел В этом уроке мы закрепим знания по сравнению чисел. Сформулируем правило для сравнения чисел относительно их расположения на координатной прямой. Научимся сравнивать числа при помощи понятия «модуль числа». Выведем правило сравнения чисел. Закрепим знания при выполнении упражнений на сравнение чисел. Конспект урока "Сравнение чисел" Вы знаете, что числа можно сравнивать. Давайте вспомним, какие числа вы уже умеете сравнивать: Следовательно, вы умеете сравнивать любые положительные числа друг с другом и с нулём. А как вы думаете, отрицательные числа можно сравнивать? Конечно! И отрицательные друг с другом, и отрицательные с положительными, и отрицательные с нулём. Сегодня на уроке мы об этом и поговорим. Давайте начертим координатную прямую, отметим на ней начало отсчёта, выберем единичный отрезок и укажем направление. Напомним, на горизонтальной координатной прямой положительные числа изображаются правее нуля, а отрицательные – левее нуля. Возьмём два числа, например, 1 и. Вы знаете, что. Отметим на координатной прямой точки А(1) и В().

Понятно, что точка А на координатной прямой расположена левее точки В. Напомним, правило: на горизонтальной координатной прямой точка с большей координатой лежит правее точки с меньшей координатой. Соответственно, на горизонтальной координатной прямой точка с меньшей координатой лежит левее точки с большей координатой. А теперь давайте возьмём два отрицательных числа, например, – 2 и – . Как сравнить такие числа? Отметим на координатной прямой точки С(– 2) и D(–). Запишем правило сравнения любых чисел: Из двух чисел больше то, которое изображается на горизонтальной координатной прямой правее. И, соответственно, из двух чисел меньше то, которое изображается на горизонтальной координатной прямой левее. Пример Если рассматривать вертикальную координатную прямую, то в сформулированном правиле сравнения нужно заменить слово «правее» на «выше», а слово «левее» – на «ниже». Сформулируем правило сравнения чисел на вертикальной координатной прямой.

Из двух чисел больше то, которое изображается на вертикальной координатной прямой выше. И, соответственно,из двух чисел меньше то, которое изображается на вертикальной координатной прямой ниже. Хотелось бы сразу уточнить, что все положительные числа больше нуля, а все отрицательные – меньше нуля. Любое отрицательное число меньше положительного. Вообще очень удобно сравнивать числа при помощи понятия «модуль числа». Так как большее из двух положительных чисел на координатной прямой изображается правее, т.е. дальше от начала отсчёта, то это число имеет больший модуль. Запомните, из двух положительных чисел больше то, чей модуль больше. Так как большее из двух отрицательных чисел на координатной прямой изображается правее, т.е. ближе к началу отсчёта, то это число имеет меньший модуль. Запомните, из двух отрицательных чисел больше то, чей модуль меньше. Чтобы научиться легко сравнивать отрицательные числа, не пользуясь координатной прямой, давайте порассуждаем. Когда теплее – при – 25° или при – 5°?

Сравнение натуральных чисел между собой – тема данной статьи. Разберем сравнение двух натуральных чисел и изучим понятие равных и неравных натуральных чисел. Выясним большие и меньшие из двух чисел на примерах. Поговорим о натуральном ряде чисел и об их сравнении. Будут показаны результаты сравнений трех и более чисел.

Сравнение натуральных чисел

Рассмотрим это на примере. Когда на дереве имеется стая, состоящая из 7 птиц, а на другом из 5 десятка птиц, то стаи считаются разными, так как не похожи друг на друга. Отсюда можно делать вывод о том, что эта непохожесть и есть сравнение.

При сравнении натуральных чисел проводится такая проверка на похожесть.

  • Равенство.Этот случай возможен, когда числа равны.
  • Неравенство.Когда числа не равны.

Когда получаем неравенство, это значит, что одно из этих чисел больше или меньше другого, что и увеличивает диапазон использования натуральных чисел.

Рассмотрим определения равных и неравных чисел. Разберем, каким образом это определяется.

Равные и неравные натуральные числа

Рассмотрим определение равных и неравных чисел.

Определение 1

В случае, когда записи двух натуральных чисел одинаковы, их считают равными между собой. Когда записи имеют различия, тогда эти числа неравные.

Исходя из определения, числа 402 и 402 считаются равными, также как и 7 и 7 , так как они одинаково записываются. Но такие числа, как 55283 и 505283 не равны, так как записи их не одинаковы и имеют различия, 582 и 285 разные, так как по записи отличаются.

Такие равенства имеют краткую запись. Знак равно « = » и знак неравно « ≠ ». Их расположение непосредственно между числами, например, 47 = 47 . Означает, что эти числа равные. Или 56 ≠ 65 . Это значит, что числа разные и отличаются по записи.

В записи, которая имеет два натуральных числа со знаком « = » называют равенством.Они бывают верными или неверными. Например, 45 = 45 , что считается верным равенством. Если 465 = 455 , что считается неверным равенством.

Сравнение однозначных натуральных чисел

Определение 2

Однозначными числами считают ряд от 1 до 9 . Из двух записанных однозначных чисел меньше считается то, котороелевее, а больше то, которое правее.

Числа могут быть одновременно больше или меньше нескольких. Например, если 1 меньше 2 , то и меньше 8 , а 5 меньше всех чисел, начиная от 6 . Это относится к каждому числу данного ряда от 1 до 9 .

Краткая запись знака меньше – « < », а знака больше – « > ». Их расположение между двумя сравниваемыми числами. Когда имеется запись, где 3 > 1 , это означает, что 3 больше единицы, если запись имеет вид 6 < 9 , тогда 6 меньше 9 .

Определение 3

Если в записи имеются два натуральных числа со знаками « < » и « > », тогда она называется неравенством. Неравенства могут быть верными и неверными.

Запись 4 < 7 – верная, а 3 > 9 – неверная.

Сравнение однозначного и многозначного натуральных чисел

Если принять за правило, что все однозначные числа меньше двухзначных, тогда получим:

5 < 10 , 6 < 42 , 303 > 3 , 32043 > 7 . Эта запись считается верной. Вот пример неверной записи неравенства: 3 > 11 , 733 < 5 и 2 > 1 020 .

Рассмотрим сравнения многозначных чисел.

Сравнение многозначных натуральных чисел

Рассмотрим сравнение двух неравных многозначных натуральных чисел с равным количеством знаков. Предварительно следует повторить раздел, изучающий разряды натурального числа и значение разряда.

В таком случае производится поразрядное сравнение, то есть слева направо. Меньшим считается число, которое имеет меньшее значение соответствующего разряда и наоборот.

Чтобы решить пример, нужно уяснить, что 0 всегда меньше любого натурального числа и что он равен самому себе. Число ноль относится к разряду натуральных чисел.

Пример 1

Произвести сравнение чисел 35 и 63 .

Решение

Визуально видно, что числа неравные, так как по записи они отличаются. Для начала сравним десятки данного числа. Видно, что 3 < 6 , а это означает, что заданные числа 35 и 63 не равны, а первое число меньше второго. Это решение записывается так: 35 < 63 .

Ответ: 35 < 63 .

Пример 2

Произвести сравнение заданных чисел 301 и 308 .

Решение

Визуально очевидно, что числа не равны, так как их запись отличается. Они оба трехзначные, это значит, что сравнение необходимо начинать с сотен, после чего десяток и потом единиц. Получим, что 3 = 3 , далее 0 = 0 . Единицы отличаются друг от друга, имеем: 1 < 8 . Отсюда имеем, что 301 < 308 .

Ответ: 301 < 308 .

Сравнение многозначных натуральных чисел производится по-другому. Большим числом считают то, которое имеет меньшее количество знаков и наоборот.

Пример 3

Произвести сравнение заданных натуральных чисел 40391 и 92248712 .

Решение

Визуально заметим, что число 40391 имеет 5 знаков, а 92248712 – 8 .

Это значит, что количество знаков, равное 5 , меньше 8 . Отсюда имеем, что первое число меньше второго.

Ответ: 40 391 < 92 248 712 .

Пример 4

Выявить большее натуральное число из заданных: 50 933 387 или 10 000 011 348 ?

Решение

Заметим, что первое число 50 933 387 имеет 8 знаков, а второе 10 000 011 348 – 11 . Отсюда следует, что 8 меньше 11 . Значит, число 50 933 387 меньше 10 000 011 348 .

Ответ: 10000011348 > 50933387 .

Пример 5

Произвести сравнение многозначных натуральных заданных чисел: 9 876 545 678 и 987 654 567 811 .

Решение

Рассмотрим, что первое число имеет 10 знаков, второе – 12 . Делаем вывод, что второе число больше первого, так как 10 меньше 12 . Сравнение 10 и 12 выполняется поразрядно. Получаем, что 1 = 1 , но 0 меньше 2 . Отсюда получаем, что 0 < 2 . Это говорит о том, что 10 < 12 .

Ответ: 9 876 545 678 < 987 654 567 811 .

Натуральный ряд чисел, нумерация, счет

Произведем запись натуральных чисел так, чтобы последующее было больше предыдущего. Запишем этот ряд: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 . Эта последовательность имеет продолжение с двузначными числами: 1 , 2 , . . , 10 , 11 , . . , 99 . Ряд с трехзначными числами имеет вид 1 , 2 , . . , 10 , 11 , . . , 99 , 100 , 101 , . . , 999 .

Эта запись продолжается до бесконечности. Такая бесконечная последовательность чисел называется натуральным рядом чисел.

Существует еще один процесс – счет. Во время счета числа называются одно за другим, то есть таким образом, как они зафиксированы по ряду. Данный процесс применим для определения количества предметов.

Исли имеется определенное число предметов, но нам необходимо узнать количество, используем счет. Он производится, начиная с единицы. Если во время пересчета перекладывать предметы в кучу, то ее можно назвать натуральным рядом чисел. Последний предмет будет являться числом их количества. Когда процесс закончен, мы знаем их число, то есть предметы пересчитаны.

Во время счета меньше то натурально число, которое находится раньше и называется раньше. Применение нумерации используется для конкретного определения предмета, то есть присваивая ему определенный номер. Например, имеем некоторое количество предметов. На каждом из них зафиксируем их порядковый номер. Таким образом производится нумерация. Она применима для различения одинаковых предметов.

Для начала необходимо повторить определение координатного луча.

При просмотре слева направо видим штрихи, которые означают определенную последовательность чисел, начиная от 0 и до бесконечности. Эти штрихи называют точками. Точки, расположенные левее меньше точек, расположенных правее. Отсюда следует, что точка, имеющая меньшую координату на координатном луче, расположена левее точки с большей координатой.

Рассмотрим на примере двух чисел 2 и 6 . Поставим две точки А и В на координатном луче, располагая на значениях 2 и 6 .

Отсюда следует, что точка А находится левее, а, значит, что она меньше точки В, так как расположение точки В правее точки А. Запишем в виде неравенства: 2 < 6 . Иначе можно озвучить, как «точка В лежит правее точки А, значит число 6 на координатном луче больше числа 2 ».

Наименьшее и наибольшее натуральное число

Считается, что 1 – это наименьшее натуральное число из множества всех натуральных чисел.Все числа, расположенные правее него считаются больше предыдущего. Этот ряд бесконечен, поэтому нет наибольшего числа из этого множества чисел.

Мы можем выделить наибольшее число из ряда однозначных натуральных чисел. Оно равно 9 . Это легко сделать, так как количество однозначных чисел ограничено. Аналогично находим большее число из множества двузначных чисел. Оно равняется 99 . Таким же образом выполняется поиск большего числа трехзначных и так далее чисел.

При сравнении пары чисел заметим, что возможен поиск меньшего и большего числа. Если 4 – число наименьшее, тогда 40 – наибольшее из заданного ряда: 4 , 6 , 34 , 34 , 67 , 18 , 40 .

Двойные, тройные неравенства

Известно, что 5 < 12 , а 12 < 35 . Два неравенства можно представить в виде одного двойного. Такая запись имеет вид: 5 < 12 < 35 . Отсюда видно, что при записи двойного неравенства получаем три неравенства, которые запишем 5 < 12 , 12 < 35 и 5 < 35 .

Запись в виде двойного неравенства применима для сравнения и трех чисел. Когда необходимо произвести сравнение 76 , 512 и 10 , мы получаем три неравенства 76 < 512 , 76 > 10 , 512 > 10 . Их, в свою очередь, можно записать как одно, но двойное 10 < 76 < 512 .

Таким же образом выполняются тройные, четверные и так далее неравенства.

Если известно, что 5 < 16 , 16 < 305 , 305 < 1 001 , 1 001 < 3 214 , тогда запись может быть представлена в виде 5 < 16 < 305 < 1 001 < 3 214 .

Необходимо быть внимательным при составлении двойных неравенств, так как можно произвести его неверно, что повлечет за собой неправильное решение задачи.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

При решении уравнений и неравенств, а также задач с модулями требуется расположить найденные корни на числовой прямой. Как ты знаешь, найденные корни могут быть разными. Они могут быть такими: , а могут быть и вот такими: , .

Соответственно, если числа не рациональные а иррациональные (если забыл что это, ищи в теме ), или представляют собой сложные математические выражения, то расположить их на числовой прямой весьма проблематично. Тем более, что калькуляторами на экзамене пользоваться нельзя, а приближенный подсчет не дает 100% гарантий, что одно число меньше другого (вдруг разница между сравниваемыми числами?).

Конечно, ты знаешь, что положительные цифры всегда больше отрицательных, и что если мы представим числовую ось, то при сравнении, наибольшие числа будут находиться правее, чем наименьшие: ; ; и т.д.

Но всегда ли все так легко? Где на числовой оси мы отметим, .

Как их сравнить, например, с числом? Вот в этом-то и загвоздка …)

Для начала поговорим в общих чертах как и что сравнивать.

Важно: преобразования желательно делать такими, чтобы знак неравенства не менялся! То есть в ходе преобразований нежелательно домножать на отрицательное число, и нельзя возводить в квадрат, если одна из частей отрицательна.

Сравнение дробей

Итак, нам необходимо сравнить две дроби: и.

Есть несколько вариантов, как это сделать.

Вариант 1. Привести дроби к общему знаменателю.

Запишем в виде обыкновенной дроби:

- (как ты видишь, я также сократила на числитель и знаменатель).

Теперь нам необходимо сравнить дроби:

Сейчас мы можем продолжить сравнивать также двумя способами. Мы можем:

  1. просто привести все к общему знаменателю, представив обе дроби как неправильные (числитель больше знаменателя):

    Какое число больше? Правильно, то, у которого числитель больше, то есть первое.

  2. «отбросим» (считай, что мы из каждой дроби вычли единицу, и соотношение дробей друг с другом, соответственно, не изменилось) и будем сравнивать дроби:

    Приводим их также к общему знаменателю:

    Мы получили абсолютно точно такой же результат, как и в предыдущем случае - первое число больше, чем второе:

    Проверим также, правомерно ли мы вычли единицу? Посчитаем разницу в числителе при первом расчете и втором:
    1)
    2)

Итак, мы рассмотрели, как сравнивать дроби, приводя их к общему знаменателю. Перейдем к другому методу - сравнение дробей приводя их к общему… числителю.

Вариант 2. Сравнение дробей с помощью приведения к общему числителю.

Да, да. Это не опечатка. В школе редко кому рассказывают этот метод, но очень часто он весьма удобен. Чтобы ты быстро понял его суть, задам тебе только один вопрос - «в каких случаях значение дроби наибольшее?» Конечно, ты скажешь «когда числитель максимально большой, а знаменатель максимально маленький».

Например, ты же точно скажешь, что Верно? А если нам надо сравнить такие дроби: ? Думаю, ты тоже сразу верно поставишь знак, ведь в первом случае делят на частей, а во втором на целых, значит, во втором случае кусочки получаются совсем маленькие, и соответственно: . Как ты видишь, знаменатели здесь разные, а вот числители одинаковы. Однако, для того, чтобы сравнить эти две дроби, тебе не обязательно искать общий знаменатель. Хотя… найди его и посмотри, вдруг знак сравнения все же неправильный?

А знак-то тот же.

Вернемся к нашему изначальному заданию - сравнить и. Будем сравнивать и. Приведем данные дроби не к общему знаменателю, а к общему числителю. Для этого просто числитель и знаменатель первой дроби умножим на. Получим:

и. Какая дробь больше? Правильно, первая.

Вариант 3. Сравнение дробей с помощью вычитания.

Как сравнивать дроби с помощью вычитания? Да очень просто. Мы из одной дроби вычитаем другую. Если результат получается положительным, то первая дробь (уменьшаемое) больше второй (вычитаемое), а если отрицательным, то наоборот.

В нашем случае попробуем из второй вычесть первую дробь: .

Как ты уже понял, мы так же переводим в обыкновенную дробь и получаем тот же результат - . Наше выражение приобретает вид:

Далее нам все равно придется прибегнуть к приведению к общему знаменателю. Вопрос как: первым способом, преобразуя дроби в неправильные, или вторым, как бы «убирая» единицу? Кстати, это действие имеет вполне математическое обоснование. Смотри:

Мне больше нравится второй вариант, так как перемножение в числителе при приведении к общему знаменателю становится в разы проще.

Приводим к общему знаменателю:

Здесь главное не запутаться, какое число и откуда мы отнимали. Внимательно посмотреть ход решения и случайно не перепутать знаки. Мы отнимали от второго числа первое и получили отрицательный ответ, значит?.. Правильно, первое число больше второго.

Разобрался? Попробуй сравнить дроби:

Стоп, стоп. Не спеши приводить к общему знаменателю или вычитать. Посмотри: можно легко перевести в десятичную дробь. Сколько это будет? Правильно. Что в итоге больше?

Это еще один вариант - сравнение дробей путем приведения к десятичной дроби.

Вариант 4. Сравнение дробей с помощью деления.

Да, да. И так тоже можно. Логика проста: когда мы делим большее число на меньшее, в ответе у нас получается число, больше единицы, а если мы делим меньшее число на большее, то ответ приходится на промежуток от до.

Чтобы запомнить это правило, возьми для сравнения любые два простых числа, например, и. Ты же знаешь, что больше? Теперь разделим на. Наш ответ - . Соответственно, теория верна. Если мы разделим на, что мы получим - меньше единицы, что в свою очередь подтверждает, что на самом деле меньше.

Попробуем применить это правило на обыкновенных дробях. Сравним:

Разделим первую дробь на вторую:

Сократим на и на.

Полученный результат меньше, значит делимое меньше делителя, то есть:

Мы разобрали все возможные варианты сравнения дробей. Как ты видишь их 5:

  • приведение к общему знаменателю;
  • приведение к общему числителю;
  • приведение к виду десятичной дроби;
  • вычитание;
  • деление.

Готов тренироваться? Сравни дроби оптимальным способом:

Сравним ответы:

  1. (- перевести в десятичную дробь)
  2. (поделить одну дробь на другую и сократить на числитель и знаменатель)
  3. (выделить целую часть и сравнивать дроби по принципу одинакового числителя)
  4. (поделить одну дробь на другую и сократить на числитель и знаменатель).

2. Сравнение степеней

Теперь представим, что нам необходимо сравнить не просто числа, а выражения, где существует степень ().

Конечно, ты без труда поставишь знак:

Ведь если мы заменим степень умножением, мы получим:

Из этого маленького и примитивного примера вытекает правило:

Попробуй теперь сравнить следующее: . Ты так же без труда поставишь знак:

Потому что, если мы заменим возведение степень на умножение…

В общем, ты все понял, и это совсем несложно.

Сложности возникают только тогда, когда при сравнении у степеней разные и основания, и показатели. В этом случае необходимо попробовать привести к общему основанию. Например:

Разумеется, ты знаешь, что это, соответственно, выражение приобретает вид:

Раскроем скобки и сравним то, что получится:

Несколько особый случай, когда основание степени () меньше единицы.

Если, то из двух степеней и больше та, показатель которой меньше.

Попробуем доказать это правило. Пусть.

Введем некоторое натуральное число, как разницу между и.

Логично, неправда ли?

А теперь еще раз обратим внимание на условие - .

Соответственно: . Следовательно, .

Например:

Как ты понял, мы рассмотрели случай, когда основания степеней равны. Теперь посмотрим, когда основание находится в промежутке от до, но равны показатели степени. Здесь все очень просто.

Запомним, как это сравнивать на примере:

Конечно, ты быстро посчитал:

Поэтому, когда тебе будут попадаться похожие задачи для сравнения, держи в голове какой-нибудь простой аналогичный пример, который ты можешь быстро просчитать, и на основе этого примера проставляй знаки в более сложном.

Выполняя преобразования, помни, что если ты домножаешь, складываешь, вычитаешь или делишь, то все действия необходимо делать и с левой и с правой частью (если ты умножаешь на, то умножать необходимо и то, и другое).

Кроме этого, бывают случаи, когда делать какие-либо манипуляции просто невыгодно. Например, тебе нужно сравнить. В данном случае, не так сложно возвести в степень, и расставить знак исходя из этого:

Давай потренируемся. Сравни степени:

Готов сравнивать ответы? Вот что у меня получилось:

  1. - то же самое, что
  2. - то же самое, что
  3. - то же самое, что
  4. - то же самое, что

3. Сравнение чисел с корнем

Для начала вспомним, что такое корни? Вот эту запись помнишь?

Корнем степени из действительного числа называется такое число, для которого выполняется равенство.

Корни нечетной степени существуют для отрицательных и положительных чисел, а корни четной степени - только для положительных.

Значением корня часто является бесконечная десятичная дробь, что затрудняет его точное вычисление, поэтому важно уметь сравнивать корни.

Если ты подзабыл, что это такое и с чем его едят - . Если все помнишь - давай учиться поэтапно сравнивать корни.

Допустим, нам необходимо сравнить:

Чтобы сравнить эти два корня, не нужно делать никаких вычислений, просто проанализируй само понятие «корень». Понял, о чем я говорю? Да вот об этом: иначе можно записать как третья степень какого-то числа, равна подкоренному выражению.

А что больше? или? Это ты, конечно, сравнишь без всякого труда. Чем большее число мы возводим в степень, тем больше будет значение.

Итак. Выведем правило.

Если показатели степени корней одинаковы (в нашем случае это), то необходимо сравнивать подкоренные выражения (и) - чем больше подкоренное число, тем больше значение корня при равных показателях.

Сложно запомнить? Тогда просто держи в голове пример и. Что больше?

Показатели степени корней одинаковы, так как корень квадратный. Подкоренное выражение одного числа () больше другого (), значит, правило действительно верное.

А что, если подкоренные выражения одинаковые, а вот степени корней разные? Например: .

Тоже вполне понятно, что при извлечении корня большей степени получится меньшее число. Возьмем для примера:

Обозначим значение первого корня как, а второго - как, то:

Ты без труда видишь, что в данных уравнениях должно быть больше, следовательно:

Если подкоренные выражения одинаковы (в нашем случае), а показатели степени корней различны (в нашем случае это и), то необходимо сравнивать показатели степени (и) - чем больше показатель, тем меньше данное выражение .

Попробуй сравнить следующие корни:

Сравним полученные результаты?

С этим благополучно разобрались:). Возникает другой вопрос: а что если у нас все разное? И степень, и подкоренное выражение? Не все так сложно нам нужно всего- навсего… «избавиться» от корня. Да, да. Именно избавиться)

Если у нас различные и степени и подкоренные выражения, необходимо найти наименьшее общее кратное (читай раздел про ) для показателей корней и возвести оба выражения в степень, равную наименьшему общему кратному.

Что мы все на словах и на словах. Приведем пример:

  1. Смотрим показатели корней - и. Наименьшее общее кратное у них - .
  2. Возведем оба выражения в степень:
  3. Преобразуем выражение и раскроем скобки (подробнее в главе ):
  4. Посчитаем, что у нас получилось, и поставим знак:

4. Сравнение логарифмов

Вот так, медленно, но верно, мы подошли к вопросу как же сравнивать логарифмы. Если ты не помнишь что это за зверь такой, советую для начала прочитать теорию из раздела . Прочитал? Тогда ответь на несколько важных вопросов:

  1. Что называется аргументом логарифма, а что его основанием?
  2. От чего зависит, возрастает ли функция или убывает?

Если все помнишь и отлично усвоил - приступаем!

Для того, чтобы сравнивать логарифмы между собой, необходимо знать всего 3 приема:

  • приведение к одинаковому основанию;
  • приведение к одинаковому аргументу;
  • сравнение с третьим числом.

Изначально, обрати внимание на основание логарифма. Ты помнишь, что если оно меньше, то функция убывает, а если больше, то возрастает. Именно на этом будет основаны наши суждения.

Рассмотрим сравнение логарифмов, которые уже приведены к одинаковому основанию, либо аргументу.

Для начала упростим задачу: пусть в сравниваемых логарифмах равные основания . Тогда:

  1. Функция, при возрастает на промежутке от, значит по определению, то («прямое сравнение»).
  2. Пример: - основания одинаковы,соответственно сравниваем аргументы: , следовательно:
  3. Функция, при, убывает на промежутке от, значит по определению, то («обратное сравнение»). - основания одинаковы, соответственно сравниваем аргументы: , однако, знак у логарифмов будет «обратный», так как функция убывает: .

Теперь рассмотрим случаи, когда основания различны, но одинаковы аргументы.

  1. Основание больше.
    • . В этом случае используем «обратное сравнение». Например: - аргументы одинаковы, и. Сравниваем основания: однако, знак у логарифмов будет «обратный»:
  2. Основание а находится в промежутке.
    • . В этом случае используем «прямое сравнение». Например:
    • . В этом случае используем «обратное сравнение». Например:

Запишем все в общем табличном виде:

, при этом , при этом

Соответственно, как ты уже понял, при сравнении логарифмов нам необходимо привести к одинаковому основанию, либо аргументу, К одинаковому основанию мы приходим, используя формулу перехода от одного основания к другому.

Можно также сравнивать логарифмы с третьим числом и на основании этого делать вывод о том, что меньше, а что больше. Например, подумай, как сравнить вот эти два логарифма?

Небольшая подсказка - для сравнения тебе очень поможет логарифм, аргумент которого будет равен.

Подумал? Давай решать вместе.

Мы легко сравним с тобой эти два логарифма:

Не знаешь как? Смотри выше. Мы только что это разбирали. Какой знак там будет? Правильно:

Согласен?

Сравним между собой:

У тебя должно получиться следующее:

А теперь соедини все наши выводы в один. Получилось?

5. Сравнение тригонометрических выражений.

Что такое синус, косинус, тангенс, котангенс? Для чего нужна единичная окружность и как на ней найти значение тригонометрических функций? Если ты не знаешь ответы на эти вопросы, очень рекомендую тебе прочитать теорию по этой теме. А если знаешь, то сравнить тригонометрические выражения между собой для тебя не составляет труда!

Немного освежим память. Нарисуем единичную тригонометрическую окружность и вписанный в нее треугольник. Справился? Теперь отметь, по какой стороне у нас откладывается косинус, а по какой синус, используя стороны треугольника. (ты, конечно помнишь, что синус, это отношение противолежащей стороны к гипотенузе, а косинус прилежащей?). Нарисовал? Отлично! Последний штрих - проставь, где у нас будет, где и так далее. Проставил? Фух) Сравниваем, что получилось у меня и у тебя.

Фух! А теперь приступаем к сравнению!

Допустим, нам необходимо сравнить и. Нарисуй эти углы, используя подсказки в рамочках (где у нас отмечено, где), откладывая точки на единичной окружности. Справился? Вот что у меня получилось.

Теперь опустим перпендикуляр из точек, отмеченных нами на окружности на ось … Какую? Какая ось у нас показывает значение синусов? Правильно, . Вот что у тебя должно получиться:

Глядя на этот рисунок, что больше: или? Конечно, ведь точка находится выше точки.

Аналогичным образом мы сравниваем значение косинусов. Только перпендикуляр мы опускаем на ось… Верно, . Соответственно, смотрим, какая точка находится правее (ну или выше, как в случае с синусами), то значение и больше.

Наверное, ты уже догадываешься, как сравнивать тангенсы, верно? Все, что нужно, знать что такое тангенс. Так что такое тангенс?) Правильно, отношение синуса к косинусу.

Чтобы сравнить тангенсы мы так же рисуем угол, как и в предыдущем случае. Допустим, нам необходимо сравнить:

Нарисовал? Теперь так же отмечаем значения синуса на координатной оси. Отметил? А теперь укажи значения косинуса на координатной прямой. Получилось? Давай сравним:

А теперь проанализируй написанное. - мы большой отрезок делим на маленький. В ответе будет значение, которое точно больше единицы. Верно?

А при мы маленький делим на большой. В ответе будет число, которое точно меньше единицы.

Так значение какого тригонометрического выражения больше?

Правильно:

Как ты теперь понимаешь, сравнение котангенсов - то же самое, только наоборот: мы смотрим, как относятся друг к другу отрезки, определяющие косинус и синус.

Попробуй самостоятельно сравнить следующие тригонометрические выражения:

Примеры.

Ответы.

СРАВНЕНИЕ ЧИСЕЛ. СРЕДНИЙ УРОВЕНЬ.

Какое из чисел больше: или? Ответ очевиден. А теперь: или? Уже не так очевидно, правда? А так: или?

Часто нужно знать, какое из числовых выражений больше. Например, чтобы при решении неравенства расставить точки на оси в правильном порядке.

Сейчас научу тебя сравнивать такие числа.

Если надо сравнить числа и, между ними ставим знак (происходит от латинского слова Versus или сокращенно vs. - против): . Этот знак заменяет неизвестный нам знак неравенства (). Далее будем выполнять тождественные преобразования до тех пор, пока не станет ясно, какой именно знак нужно поставить между числами.

Суть сравнения чисел состоит в следующем: мы относимся к знаку так, будто это какой-то знак неравенства. И с выражением мы можем делать все то же, что делаем обычно с неравенствами:

  • прибавить любое число к обеим частям (и вычесть, конечно, тоже можем)
  • «перенести все в одну сторону», то есть вычесть из обеих частей одно из сравниваемых выражений. На месте вычитаемого выражения останется: .
  • домножать или делить на одно и то же число. Если это число отрицательное, знак неравенства меняется на противоположный: .
  • возводить обе части в одну и ту же степень. Если эта степень - четная, необходимо убедиться, что обе части имеют одинаковый знак; если обе части положительны, при возведении в степень знак не меняется, а если отрицательны, тогда меняется на противоположный.
  • извлечь корень одинаковой степени из обеих частей. Если извлекаем корень четной степени, необходимо предварительно убедиться, что оба выражения неотрицательны.
  • любые другие равносильные преобразования.

Важно: преобразования желательно делать такими, чтобы знак неравенства не менялся! То есть в ходе преобразований нежелательно домножать на отрицательное число, и нельзя возводить в квадрат, если одна из частей отрицательна.

Разберем несколько типичных ситуаций.

1. Возведение в степень.

Пример.

Что больше: или?

Решение.

Поскольку обе части неравенства положительны, можем возвести в квадрат, чтобы избавиться от корня:

Пример.

Что больше: или?

Решение.

Здесь тоже можем возвести в квадрат, но это нам поможет избавиться только от квадратного корня. Здесь надо возводить в такую степень, чтобы оба корня исчезли. Значит, показатель этой степени должен делиться и на (степень первого корня), и на. Таким числом является, значит, возводим в -ю степень:

2. Умножение на сопряженное.

Пример.

Что больше: или?

Решение.

Домножим и разделим каждую разность на сопряженную сумму:

Очевидно, что знаменатель в правой части больше знаменателя в левой. Поэтому правая дробь меньше левой:

3. Вычитание

Вспомним, что.

Пример.

Что больше: или?

Решение.

Конечно, мы могли бы возвести все в квадрат, перегруппировать, и снова возвести в квадрат. Но можно поступить хитрее:

Видно, что в левой части каждое слагаемое меньше каждого слагаемого, находящегося в правой части.

Соответственно, сумма всех слагаемых, находящихся в левой части, меньше суммы всех слагаемых, находящихся в правой части.

Но будь внимателен! У нас спрашивали что больше...

Правая часть больше.

Пример.

Сравните числа и.

Решение.

Вспоминаем формулы тригонометрии:

Проверим, в каких четвертях на тригонометрической окружности лежат точки и.

4. Деление.

Здесь тоже используем простое правило: .

При или, то есть.

При знак меняется: .

Пример.

Выполни сравнение: .

Решение.

5. Сравните числа с третьим числом

Если и, то (закон транзитивности).

Пример.

Сравните.

Решение.

Сравним числа не друг с другом, а с числом.

Очевидно, что.

С другой стороны, .

Пример.

Что больше: или?

Решение.

Оба числа больше, но меньше. Подберем такое число, чтобы оно было больше одного, но меньше другого. Например, . Проверим:

6. Что делать с логарифмами?

Ничего особенного. Как избавляться от логарифмов, подробно описано в теме . Основные правила такие:

\[{\log _a}x \vee b{\rm{ }} \Leftrightarrow {\rm{ }}\left[ {\begin{array}{*{20}{l}}{x \vee {a^b}\;{\rm{при}}\;a > 1}\\{x \wedge {a^b}\;{\rm{при}}\;0 < a < 1}\end{array}} \right.\] или \[{\log _a}x \vee {\log _a}y{\rm{ }} \Leftrightarrow {\rm{ }}\left[ {\begin{array}{*{20}{l}}{x \vee y\;{\rm{при}}\;a > 1}\\{x \wedge y\;{\rm{при}}\;0 < a < 1}\end{array}} \right.\]

Также можем добавить правило про логарифмы с разными основаниями и одинаковым аргументом:

Объяснить его можно так: чем больше основание, тем в меньшую степень его придется возвести, чтобы получить один и тот же. Если же основание меньше, то все наоборот, так как соответствующая функция монотонно убывающая.

Пример.

Сравните числа: и.

Решение.

Согласно вышеописанным правилам:

А теперь формула для продвинутых.

Правило сравнения логарифмов можно записать и короче:

Пример.

Что больше: или?

Решение.

Пример.

Сравните, какое из чисел больше: .

Решение.

СРАВНЕНИЕ ЧИСЕЛ. КОРОТКО О ГЛАВНОМ

1. Возведение в степень

Если обе части неравенства положительны, их можно возвести в квадрат, чтобы избавиться от корня

2. Умножение на сопряженное

Сопряженным называется множитель, дополняющий выражение до формулы разности квадратов: - сопряженное для и наоборот, т.к. .

3. Вычитаение

4. Деление

При или то есть

При знак меняется:

5. Сравнение с третьим числом

Если и, то

6. Сравнение логарифмов

Основные правила:

Логарифмы с разными основаниями и одинаковым аргументом.

Сравнение чисел может производиться различными способами:

1) с опорой на порядок называния чисел при счете: число на­званное раньше будет меньшим (это следует из свойства упоря­доченности множества натуральных чисел);

2) с опорой на процесс присчитывания: три и один будет четы­ре, значит три меньше, чем четыре;

3) с опорой на количественные модели сравниваемых чисел:

Для фиксации процесса сравнения вводится знак сравнения.

Следует помнить, что знак сравнения - один, но читается он по-разному в зависимости от желания читающего. В соответствии с тра­дицией чтения текстов в европейских письменностях слева направо первое прочтение знака сравнения обычно проводится слева напра­во: 3 < 4 (три меньше четырех), но эту же запись при желании можно прочитать и справа налево (четыре больше трех), причем для этого не надо переставлять элементы записи таким образом: 4 > 3. Не сто­ит внушать ребенку неверное представление о том, что есть два знака

сравнения, один из которых называется «меньше», а другой - «боль­ше», поскольку это формирует негибкий, конвергентный шаблон вос­приятия, который потом будет мешать ребенку в старшей школе при работе с неравенствами. Полезно предлагать ребенку каждую запись такого вида читать двумя способами, приведенными выше.

7. Число 10

Десять единиц - это десяток.

Десяток является второй счетной единицей в десятичной сис­теме счисления (десятичная система счисления имеет основанием число десять). Десять десятков образуют следующую счетную еди­ницу - сотню.

Число 10 является числом, завершающим первый десяток.

Число 10 является-первым двузначным числом в ряду натураль­ных чисел.

Число 10 является первым целым десятком, с которым знако­мится ребенок.

В дальнейшем на основе понятия десяток ребенок знакомится с разрядным и десятичным составом двузначных и многозначных чисел. Чтобы не вдаваться в терминологические сложности и не перегружать материал ранним введением понятия «разряд», удоб­но целиком провести знакомство с десятком и его записью с помо­щью цифр на предметной модели.

Знакомя ребенка с числом 10 (первым двузначным числом и первым целым десятком), очень важно рассмотреть его с раз­личных позиций: и как новое число в ряду (следующее за девятью и потому подчиняющееся общему принципу построения множе­ства натуральных чисел), и как первое число, в записи которого использовано два символа; и как новую счетную единицу (деся­ток), для чего используют связку десяти палочек в качестве еди­ницы счета: один десяток; два десятка, три десятка...

Не следует торопиться вводить стандартные названия этих де­сятков (двадцать, тридцать и т. п.), полезнее один-два урока ис­пользовать связки по 10 палочек для счета с целью формирования представления о десятке, как счетной единице.

Нуль в такой аналогии символизирует «связку», охватывающее колечко. Для усвоения этой аналогии полезно сразу же предлагать детям и задания обратного вида: покажите на палочках число 30 (три связки), число 40 (четыре связки) и т. п.

Счет десятками (10,20,30,40,50,60,70,80,90) - процесс «тех­нически» аналогичный счету единицами в пределах 10. Полезно научить ребенка присчитывать и отсчитывать десятки так же, как он делал это с единицами. В дальнейшем это умение поможет ре­бенку легче освоить вычислительные приемы сложения и вычита­ния в пределах 100.

При знакомстве ребенка с нумерацией однозначных чисел ре­комендуем педагогу использовать следующие виды заданий:

1) на способ образования каждого следующего числа путем присчитывания единицы к предыдущему:

Как из числа 3 получить 4? (Добавить к трем один.)

2) на определение места числа в ряду:

За каким числом стоит число 5? (За числом 4.) Где место числа 8? (Между числами 7и 9.)

3) на сравнение как двух соседних, так и несоседних чисел:

Сравните числа: 5...4 7.„2

4) на состав числа:

5) на запоминание обратной последовательности числительных в ряду: